Regulation of lung epithelial cell morphology by cAMP-dependent protein kinase type I isozyme.

نویسندگان

  • S E Porter
  • L D Dwyer-Nield
  • A M Malkinson
چکیده

Cell shape is mediated in part by the actin cytoskeleton and the actin-binding protein vinculin. These proteins in turn are regulated by protein phosphorylation. We assessed the contribution of cAMP-dependent protein kinase A isozyme I (PKA I) to lung epithelial morphology using the E10/E9 sibling cell lines. PKA I concentration is high in flattened, nontumorigenic E10 cells but low in their round E9 transformants. PKA I activity was lowered in E10 cells by stable transfection with a dominant negative RIalpha mutant of the PKA I regulatory subunit and was raised in E9 cells by stable transfection with a wild-type Calpha catalytic subunit construct. Reciprocal changes in morphology ensued. E10 cells became rounder and grew in colonies, their actin microfilaments were disrupted, and vinculin localization at cell-cell junctions was diminished. The converse occurred in E9 cells on elevating their PKA I content. Demonstration that PKA I is responsible for the dichotomy in these cellular behaviors suggests that manipulating PKA I concentrations in lung cancer would provide useful adjuvant therapy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Altered regulation of mRNA levels encoding the type I isozyme of cAMP-dependent protein kinase in neoplastic mouse lung epithelial cells.

Neoplastic mouse lung epithelial cells express greatly diminished activity, protein, and mRNA for the type I isozyme of cAMP-dependent protein kinase (PKA I). To address the mechanism of this decrease, the turnover rate of PKA subunit mRNA was examined. Northern blot analysis of PKA mRNAs from transcriptionally inhibited cells indicated that these messages exhibit different stabilities and that...

متن کامل

THE EFFECT OF THEOPHYLLINE ON THE KINETICS OF cAMP-DEPENDENT PROTEIN KINASE CATALYTIC SUBUNIT, cAMP, PROTEIN KINASE INHIBITOR AND THEIR RELATIONSHIP IN LUNG TISSUE

We have investigated the effect of theophylline on the kinetics of the catalytic subunit of protein kinase and related factors in lung tissue. The results show that the point of highest concentration of the C subunit of protein kinase which is active in casein phosphorylation is at 3h of incubation time, but in the presence of 100 Ilg/ InL and 10µg/mL theophylline, this is shifted to I.S an...

متن کامل

Decreased expression of the type I isozyme of cAMP-dependent protein kinase in tumor cell lines of lung epithelial origin.

A spontaneous transformant derived from a mouse lung epithelial cell line exhibited decreased cAMP-dependent protein kinase (PKA) activity. DEAE column chromatography demonstrated that this was caused by specific loss of the type I PKA isozyme (PKA I). Western immunoblot analysis indicated that indeed several mouse lung tumor-derived cell lines and spontaneous transformants of immortalized, non...

متن کامل

Regulation of CFTR chloride channel trafficking by Nedd4-2: role of SGK1

Introduction: The cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl−) channel is an essential component of epithelial Cl− transport systems in many organs. CFTR is mainly expressed in the lung and other tissues, such as testis, duodenum, trachea and kidney. The ubiquitin ligase neural precursor cells expressed developmentally down-regulated protein 4-2 (Nedd4-2...

متن کامل

Differential regulation of the stability of cyclic AMP-dependent protein kinase messenger RNA in normal versus neoplastic mouse lung epithelial cells.

Neoplastic mouse lung epithelial cells contain greatly diminished activity, protein, and mRNA for the type I isozyme of cyclic AMP-dependent protein kinase (PKA I), while expression of the type II isozyme (PKA II) is similar to that of normal lung cells. A time course of PKA mRNA content in transcriptionally inhibited cells indicated that most PKA mRNAs are more stable in the neoplastic E9 cell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 280 6  شماره 

صفحات  -

تاریخ انتشار 2001